Cyclic AMP-dependent protein phosphorylation in canine renal brush-border membrane vesicles is associated with decreased phosphate transport.
نویسندگان
چکیده
It is known that the administration of parathyroid hormone to dogs results in phosphaturia and decreased phosphate transport in brush-border vesicles isolated from the kidneys of those dogs. Parathyroid hormone has been shown to activate adenylate cyclase at the basal-lateral membrane of the renal proximal tubular cell. It has been postulated that parathyroid hormone-induced phosphaturia is effected through phosphorylation of brush-border protein by membrane-bound cAMP-dependent protein kinase. An experimental system was designed such that phosphorylation of brush-border vesicles and Na+-stimulated solute transport could be studied in the same preparations. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane vesicles revealed cAMP-dependent phosphorylation of 2 protein bands (Mr = 96,000 and 62,000), which was enhanced by exposure of the inside of the membrane vesicles to ATP and cAMP. Cyclic AMP-dependent phosphorylation of brush-border vesicles was accompanied by inhibition of Na+-stimulated Pi but not D-glucose transport or 22Na+ uptake. When renal brush-border vesicles from parathyroidectomized and normal dogs were phosphorylated in vitro in the presence and absence of cAMP, both the cAMP-dependent phosphorylation and inhibition of Na+-stimulated Pi transport were greater in vesicles isolated from kidneys of parathyroidectomized dogs relative to control animals. We conclude that the cAMP-dependent phosphorylation of brush-border membrane-vesicle proteins is associated with specific inhibition of Na+-stimulated Pi transport. The phosphaturic action of parathyroid hormone (PTH) could be mediated through the cAMP-dependent phosphorylation of specific brush-border membrane proteins.
منابع مشابه
Energetics of the Na+-dependent transport of D-glucose in renal brush border membrane vesicles.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium i...
متن کاملCharacterization of sodium-dependent and sodium-independent nucleoside transport systems in rabbit brush-border and basolateral plasma-membrane vesicles from the renal outer cortex.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient ...
متن کاملSignal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA.
The activity of the sodium/hydrogen exchanger 3 (NHE3) isoform of the sodium/hydrogen exchanger in the brush-border membrane of the renal proximal tubule is tightly regulated. Recent biochemical and cellular experiments have established the essential requirement for a new class of regulatory factors, sodium/hydrogen exchanger regulatory factor (NHERF) and NHERF-like proteins, in cAMP-mediated i...
متن کاملEffect of Fasting on Enzymes of Carbohydrate Metabolism, Brush Border Membrane and on Transport Functions in Superficial and Juxta-Medullary Cortex of Rat Kidney
The effect of 1, 3 and 5-day fasting was studied on serum parameters; enzymes of brush border membrane and carbohydrate metabolism; transport of Pi and proline in different parts of the rat kidney. Fasting decreased the activities of lactate dehydrogenase, malate dehydrogenase but increased the activities of glucose-6-phosphatase and fructose 1,6-bisphosphatase; glucose-6-phosphate dehydrogenas...
متن کاملDifferential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency
Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 257 2 شماره
صفحات -
تاریخ انتشار 1982